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Abstract— This paper introduces a method for decompos-
ing the component responses of the evoked potentials. The
decomposition was realized by zero-pole modeling of the
evoked potentials in the discrete cosine transform (DCT)
domain. It was found that the DCT coefficients of a com-
ponent response in the evoked potentials could be modeled
sufficiently by a second order transfer function in the DCT
domain. The decomposition of the component responses
was approached by using partial expansion of the estimated
model for the evoked potentials, and the effectiveness of the
decomposition method was evaluated both qualitatively and
quantitatively. Because of the overlap between the compo-
nent responses, the proposed method enables an accurate
identification of the component responses in the evoked po-
tentials, which is useful for clinical and neurophysiological
investigations.

Keywords— Evoked potentials, component response, dis-
crete cosine transform, zero-pole modeling, decomposition

I. INTRODUCTION

Evoked potentials (EPs) are generated by exogenous ex-
citation of peripheral nerves with a precise stimulus, and
are measured by placing electrodes on several well-defined
positions on the scalp. Because of the superimposed back-
ground activity, the EPs are usually averaged to generate
a suitable waveform for analysis. In clinical practice, the
evoked responses in EPs are valuable for assessing various
kinds of neuronal diseases. The averaged evoked potentials
usually consist of several component responses, in which
the peak latency and the peak amplitude of each response
can be used to investigate the disease of a corresponding
neuronal ensemble.

The general measurement of the peak latencies as well as
the peak amplitudes encounters a problem that the preci-
sion is low because of the overlap between the component
responses in the EPs. As the EPs recorded on the scalp of
brain are a spatial compounded signal generated from vari-
ous neuronal resources in the different regions of brain, the
scalp signal of the EPs include many neuronal responses
transmitted. The problem of the overlap is that the poten-
tial change generated by a latter response appears before
the former component response ends. Then, the peak la-
tency and peak amplitude of a component response are
closely related to those of the former and latter component
responses, so that the features of a neuronal response can-
not be identified precisely from the direct measurement of
the EPs.

In this paper, we introduce a method for decompos-
ing the component responses in the EPs by appropriate
modeling. The model was constructed based on the trans-

formed signal of the EPs. By using discrete cosine trans-
form (DCT) of the EPs, the DCT coefficients of each EP
component response were sufficiently represented by a sec-
ond order transfer function with a conjugate pole pair. The
pain-evoked somatosensory evoked potentials (pain SEP)
were adopted in the current analysis. The effectiveness of
the proposed method was evaluated both qualitatively and
quantitatively from the simulation and experimental study.

II. METHODS
A. Subjects and data acquisition

Eight healthy subjects, aged from eighteen to thirty-
eight, volunteered for the present study. The pain stimulus
method can be found in [2]. For all subjects, EEGs were
recorded with shallow cup electrodes (1 cm in diameter)
placed at Cz site on the scalp and earlobes (Al and A2)
according to the International 10-20 System. The analog
EEG signals referenced to the linked F3-F4 were amplified
and filtered with the bandpass of 10-200 Hz, and then con-
verted to digital data with the sampling rate of 500 Hz,
and finally stored into the disk. For each subject, the pain
SEP trials of 200 stimuli unassociated with any artifact
within the period of 0.6 s after the stimulus were selected.
The pain SEPs averaged from 200 trials were used for the
current analysis.

B. Procedure of component decomposition

The whole procedure of the component decomposition
for the EPs consists of four operations; DCT, estimation
of model parameters, partial expansion and inverse DCT
(IDCT).

1. Discrete cosine transform Instead of the direct mod-
eling in the time domain, we adopted the methodology of
modeling in the DCT domain. The EP signal is previously
transformed into its DCT coefficients y (k) by using discrete
cosine transform [3]
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where z(n) denotes the averaged EPs in the time domain
and y(k) the DCT coefficients of z(n) in the DCT domain,
n and k series numbers for z(n) and y(k) respectively, N
the data length (300 in the current study).

y(k) =
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2. Estimation of model parameters The DCT coefficients
y(k) of the EPs are modeled by a system transfer func-
tion. The model parameters are determined using the least
square method based on the DCT coefficients y(k) of the
EPs. The detail explanation is presented in the section
I1-C.

3. Partial expansion The partial expansion [4] is to de-
compose the estimated system transfer function into sev-
eral fractions with a conjugate pole pair. The impulse re-
sponse of each fraction ¢;(k) is used to represent a com-
ponent response of the EPs. The explanation is given in
section II-D

4. Inverse discrete cosine transform The component re-
sponses of the EPs in the time domain are obtained by
taking the inverse discrete cosine transform of the model
output g;(k). The inverse discrete cosine transform is given
by

N-1
#i(n) = 1/N@(O)+J?TN;M’€>COS%
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where ¢;(k) and Z;(n) represent the component responses
in the DCT domain and the time domain, respectively.

C. DCT domain modeling

The system transfer function H(z~!) for representing the
DCT coefficients of the EPs is given by

1y Bot+ Bz 4 oz
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where «a; and (; are model parameters, and 2m the model
order. z~! is a complex value.

As the averaged EPs is still noise contaminated, the pa-
rameter set [y, s, * -, Qam, Bo, By -+, Bom)T in (3) was
determined by the least square method in order to mini-
mize the square sum of the difference between the impulse
response of the system transfer function (3) and the DCT
coefficients of the averaged EP signal y(k). The minimiza-
tion was realized using an iterative least square algorithm
of the Steiglitz-McBridge method [5].

D. Component decomposition

The decomposition of component responses of the EPs
was approached by decomposing the system transfer func-
tion (3) in the DCT domain. The waveform of the EPs in
the time domain can be considered as the sum of several
bell-shaped monophasic component waves, in which each
component wave has a positive or negative peak.

A second order model with a conjugate pole pair was
constructed as
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where a; = K; — ¢; and b; = 2¢;r; cos0; — (o} + 0?)K;.

It was found that the IDCT of the impulse response of
H;(271') generated a bell-shaped waveform similar to the
component waves in the EPs. If the parameters in H;(z7!)
is well adjusted, a sufficient fit between them can be ob-
tained. Therefore, the second order model H;(z7!) was
used to represent a component response of the EPs.

When the system transfer function (3) for representing
the EPs is optimally determined, the EPs can be decom-
posed into several second order fractions with a conjugate
pole pair by using z-transform partial expansion.

III. RESULTS
A. Simulation study of component decomposition

A simulation study was implemented for examining the
effectiveness of the proposed method of the component re-
sponse decomposition. The signal simulating the EPs in
the time domain was generated by the summation of two
second order system transfer function in the DCT domain.
The parameters of the two second order transfer functions
was given in the format [a;, b;, r;, 6;] as [-208.9, 107.9, 0.458,
41.1°] and [185.8, 77.1, 0.447, 127.1°], and their time sig-
nals were illustrated in Fig. 1(a) and (b), respectively. As
the averaged EPs were still noise contaminated, the model
parameters were estimated under the signal-to-noise ratio
of 40, in which the noise was simulated by using an AR
model (order=10) estimated from the background activity
of EEG [6].

A general method of modeling evaluation was adopted in
the current study. The effectiveness of the proposed model
was evaluated by the percent root mean square difference
Prd, i.e., the residue between the model output and the
signal for modeling.

The peak latencies [s] and the peak amplitudes [pV] of
the original component 1 z; (Fig. 1(a)) and component
2 z(Fig. 1(a)) were (0.254, 8.34) and (0.356, 10.09), re-
spectively. In order to explain the relationship between
the component 1 and the component 2, the changes of the
peak latencies and the peak amplitudes were investigated.
First, the signal illustrated in Fig. 1(c) for simulating the
EPs was obtained by the sum of x; and z». The peak la-
tencies and the peak amplitudes of the component 1 and
the component 2 in the signal z; + 25 were (0.252, 6.70)
and (0.368, 11.45), in which the baseline was referenced to
the beginning of the signal. Second, the amplitude of the
component 1 was enlarged three times of the original com-
ponent 1, and the corresponding time signal 3z; was shown
in Fig. 1(f), in which the peak latency and peak amplitude
were (0.254, 25.02). The compounded signal 3z; +z5 shown
in Fig. 1(h) was obtained by the sum of Fig. 1(f) and (g),
in which the component 2 was kept the same. The peak
latencies and the peak amplitudes of the component 1 and
the component 2 in the signal 3z, + x5 were detected as
(0.256, 23.13) and (0.380, 16.14).

By comparing Fig. 1(c) and (h), large changes of the
component 2 were found, although the component 2 was
the same in the two signals. For the component 2, the
peak latency was changed from 0.368 s to 0.380 s, and the
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Fig. 1. Simulation study shows the peak latencies and the peak
amplitudes as well as the waveforms of the same component 2
in the EPs are changeable with the different amplitude of the
component 1 so that the direct measurement of them may be
inaccurate because of the mutual overlap. Identical component 2
can be extracted by the decomposition of the EPs using the DCT
domain modeling.

peak amplitude was changed from 11.45 pV to 16.14 uV.
These results suggest that the peak latency and the peak
amplitude of a component response in the EPs are closely
related to those of the other responses so that the direct
measurement of the peaks in the EPs cannot get accurate
peak latency and peak amplitude of a component response.
Further, because the error of the direct measurement of
the component 2 (0.380, 16.14) detected from the signal
3x1+xo was larger than those from the signal x4z (0.368,
11.45) by comparing with the original component 2 (0.356,
10.09), it indicated that if the difference of the potential
changes between the two components in the compounded
signal was larger, the direct measurement might be more
questionable.

For the two compounded signals ; + x5 and 3z1 + o,
the component decomposition was approached. As each
of the simulated signals was composed of two component
waves, the model order of H(z71) in (3) was selected as
four because each component wave could modeled suffi-
ciently using a second order transfer function. The model
parameters given in (3) were estimated using least square
method, and the decomposition was realized by partial ex-
pansion of the estimated H(z7!).

The component waves Z; and Z» decomposed from the
signal z; + x5 were illustrated in Fig. 1(d) and (e), respec-
tively. From visual inspection, the estimated component
waves were in a good agreement with the original com-
ponent waves. The estimated parameter sets [a;, b;, 74, 6;]
for the two component waves were [-217.6, 109.1, 0.452,
40.8°] and [173.1, 74.5, 0.460, 126.8°]. As the waveform of

a system response was mainly determined by the distribu-
tion of the poles, the estimated parameters for the com-
ponent waves also demonstrated a satisfactory component
decomposition, where the quantitative differences of Prd
were less than 5%. The peak latencies and the peak am-
plitudes of the decomposed component waves were (0.256,
8.35) and (0.354, 10.2). Comparing with those of the origi-
nal component waves, the proposed decomposition method
demonstrated such a good consistence.

The component waves 3%; and &5 decomposed from the
signal x1 + x» are illustrated in Fig. 1(i) and (j), respec-
tively. The estimated parameter sets [a;, b;,7;,6;] for the
two component waves are [-649.4, 326.0, 0.452, 40.9°] and
[174.3, 74.8, 0.460, 127.7°]. The quantitative differences
of Prd were also less than 5%. The peak latencies and
the peak amplitudes of the decomposed component waves
were (0.256, 24.80) and (0.356, 9.56). Thus, from both of
the signals 1 + x5 and 3x; + x5, an identical signal of the
component 2 was extracted, which was in a good agreement
with the original component 2. As the decomposition re-
sults were very close to those of the original component
waves, the accuracy of the detection of the peak latencies
and the peak amplitudes can be improved by using the
proposed decomposition method.

B. Ezperimental study on the pain SEPs
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Fig. 2. Component response decomposition for the pain SEPs using
DCT domain modeling.

The pain SEP signals recorded from eight subjects were
processed by the proposed method of the component de-
composition for the EPs. The estimation results were il-
lustrated in Fig. 2. The pain SEP signal shown in Fig.
2(a) was obtained by averaging 200 pain SEP trials. The
data length of the averaged signal was 0.6 s with the sam-
pling interval of 2 ms, i.e., the total data number was 300.
The electrical stimulus added on the hand was presented
at the beginning of the signal. The pain SEP signal was
composed of one large negative (N2) and one large positive



(P2) bell-shaped monophasic component waves during the
time periods of 0.2 s to 0.3 s and 0.3 s to 0.4 s, respectively.
For decomposing the component responses, pain SEP sig-
nal from 0.18 to 0.438 s was extracted, which were depicted
by the arrows.

In the procedure of model parameter estimation, the
model parameters [a1, @, - - -, Q@2m;, B0, B1s - - -, Bom] T in (3)
were optimally determined using the least square method,
in which m was selected as two. Although the averaged
pain SEP signal was noise contaminated, the model out-
puts for the pain SEP signal illustrated in Fig. 2(b) demon-
strated a good agreement with the corresponding signals,
where the quantitative difference was less than 10%. The
decomposition of model transfer function was achieved by
partial-fraction expansion, i.e., the model transfer function
was decomposed into two fractions with a conjugate pole
pair. The model output for the pain SEP signal was shown
in Fig. 2(b). By using partial-fraction expansion of model
transfer function, the model outputs for two component re-
sponses of the pain SEPs were illustrated in Fig. 2(c) and
(d). The decomposed component responses were also in a
good agreement with the pain SEPs.

IV. DiscussioN
A. Component decomposition using DCT domain modeling

The reason for the excellent decomposition is that the
IDCT of the impulse response of a second order transfer
function can generate a bell-shaped monophasic waveform,
which is in a good accordance to the EP signal. Com-
pared with other parametric modeling of the EPs [8], a
monophasic wave is modeled sufficiently in the DCT do-
main, whereas the model order of the direct time domain
modeling is much higher such that the error of decomposi-
tion may be large.

B. Neurophysiological consideration

A component response of the EPs was assumed of a bell-
shaped monophasic waveform, which was modeled effec-
tively in the DCT domain. This assumption is in accor-
dance to the common acceptance that a neurophysiologi-
cal response is in a bell-shaped waveform [7]. As the model
output is in a good agreement with the EPs, the proposed
method is appropriate for modeling the EPs as well as the
component responses.

In this study, the pain SEPs were adopted for the anal-
ysis. The pain SEPs have two early components; a neg-
ative peak (N2) and a positive peak (P2), as marked in
Fig. 2(a). From the neurophysiological understanding, N2
might, to some degree, be affected by exogenous factors,
and an endogenous aspect of N2 was reported that it was
modulated by arousal states or distraction [9]. In a recent
investigation, it indicated that P2 was hardly affected un-
der the different human status of task handling so that P2
was most likely a pain-related component that might serve
as an anchor for the following processing of CO- laser in-
duced pain sensation [2]. From the above literatures, the
difference of the peak amplitudes of N2 in the recorded

pain SEPs may be large because it is related to the exoge-
nous factors. From the analysis in the simulation study,
the waveform as well as the peak latency and the peak am-
plitude of P2 is greatly affected by the component of N2
because of the overlap between them. Therefore, the di-
rect measurement of the peaks in the pain SEP trials may
be inaccurate for the detection of P2 because of the differ-
ence in the amplitudes of the N2. From the results of the
proposed method demonstrated both in the simulation and
experimental study, an accurate investigation of the peak
amplitudes and peak latencies can be approached by the
appropriate decomposition of the component responses in
pain SEP using the DCT domain modeling.

V. CONCLUSION

Component response decomposition for the EPs was ap-
proached by decomposing the EP model in the DCT do-
main. A good result of component decomposition was
demonstrated both in the simulation and experimental
study. The successful approach enables a reasonable de-
composition for the EPs, which is useful for the accurate
detection of the component responses in the physiological
and clinical investigation.
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